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ABSTRACT Diffuse Correlation Spectroscopy (DCS), a noninvasive optical technique, measures deep
tissue blood flow using avalanche photon counting modules and data acquisition devices such as FPGAs
or correlator boards. Conventional DCS instruments use in-processor counter modules that consume
32 bits/channel which is inefficient for low-photon budget situations prevalent in diffuse optics. Scaling
these photon counters for large-scale imaging applications is difficult due to bandwidth and processing
time considerations. Here, we introduce a new, lossless compressed sensing approach for fast and efficient
detection of photon counts. The compressed DCS method uses an array of binary-coded-decimal counters to
record photon counts from 8 channels simultaneously as a single 32-bit number. We validate the compressed
DCS approach by comparisons with conventional DCS in experiments on tissue simulating phantoms and
in-vivo arm cuff occlusion. Lossless compressed DCSwas implemented with 87.5% compression efficiency.
In tissue simulating phantoms, it was able to accurately estimate a tissue blood flow index, with no statis-
tically significant difference compared to conventional DCS. Compressed DCS also recorded blood flow
in vivo, in human forearm, with signal-to-noise ratio and dynamic range comparable to conventional DCS.
Lossless 87.5% efficient compressed sensing counting of photon counts meets and exceeds benchmarks set
by conventional DCS systems, offering a low-cost alternative for fast (∼100 Hz) deep tissue blood flow
measurement with optics.

INDEX TERMS Biomedical computing, biophotonics, data compression, diffuse optics, diffuse correlation
spectroscopy, optoelectronic sensors, photon counting.

I. INTRODUCTION
Blood flow (BF) is a biomarker for tissue health because it
is an indicator of metabolism and disease state in different
parts of the body [1], [2], [3], [4], [5]. In recent years, Diffuse
Correlation Spectroscopy (DCS) [6], [7], [8], [9] has emerged
as a popular method for portable, noninvasive, bedside mon-
itoring of deep tissue blood flow. DCS senses and quanti-
fies an index of blood flow (F) in tissue microvasculature
from intensity fluctuations in coherent laser light that has
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approving it for publication was Vishal Srivastava.

diffused through tissue. DCS blood flow indices have been
validated against a variety of gold standard modalities includ-
ing Doppler ultrasound [10], computed tomography (CT)
[11] and Magnetic Resonance Imaging (MRI) [12]. DCS’s
utility has been demonstrated for noninvasive deep-tissue
blood flow measurements in adult/pediatric brain [8], [10],
[13], [14], [15], in muscle [16], [17] and in spinal cord [18],
[19], [20].

A typical DCS instrument, outlined in Fig. 1, comprises
of a long coherence laser to illuminate the tissue, and sin-
gle photon counting detectors to record light reflected from
tissue. A custom correlator samples TTL pulses generated
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FIGURE 1. Schematic outlining Diffuse Correlation Spectroscopy.
A wavelength stabilized laser is configured as an illumination source.
Dynamic scatterers in the tissue (i.e., red blood cells) cause deviation in
individual photon travel path resulting in temporal intensity fluctuations
at the detector. These fluctuations are sensed by a series of APDs and
converted to TTL pulses. A counter module is configured to sample these
TTL pulses. The autocorrelation function g2(τ ) of this sampled vector is fit
to a correlation diffusion model to calculate the blood flow.

by the detectors (typically at 1-10 MHz) and computes an
intensity autocorrelation function that quantifies temporal
fluctuations in the light. Recently, we [21] and others [22],
[23], [24] have demonstrated the use of customized National
Instruments (NI) counter/timers or Field Programmable Gate
Arrays (FPGAs) for acquisition, and software computation
of DCS blood flow indices at speeds up to 100 Hz. These
improvements to the temporal resolution have facilitated
important new measurements such as noninvasive quantifi-
cation of cerebral autoregulation [25], [26], [27], critical
closing/intracranial pressure [28], [29], [30], and arteriole
compliance [28], [31] in the brain. In DCS, single mode
fibers are used to sample light from one speckle, which
prevents speckle averaging at the detector and expands the
dynamic range of measured intensity autocorrelation func-
tions. However, since single-mode detection comes at the
expense of signal levels, DCS intensity autocorrelation func-
tions measured at a single channel are noisy. To overcome
this limitation, typical implementations of DCS instruments
often have more than one detection channel (3-6) at a single
measurement site (or for a single source-detector separation)
to improve signal-to-noise ratio of measured autocorrelation
functions and hence blood flow estimates. Expansion of DCS
measurements to an imaging configuration (e.g., Diffuse Cor-
relation Tomography [32], [33]) would multiply the need
for detection channels. For example, tomography with eight
detection positions would require 32-48 detection channels.
There are two major technical limitations that restrict use of
multiple detection channels in DCS. Most commercial data
acquisition systems limit the number of available counters/
timers on a single board to 16. More significantly, parallel
counting of photons and parallel computation of intensity
autocorrelation functions from multiple detection channels
will be a memory and computationally expensive process.
These requirements for multiple digital counting elements
(i.e., counters), increase instrument cost, complexity, and data
bandwidth.

In this contribution, we introduce a new approach –
compressed Diffuse Correlation Spectroscopy (compressed
DCS) – for fast, computationally efficient, multi-channel

measurement of DCS intensity autocorrelation functions
without the use of processor embedded counter modules.
Our approach implements photon counting using eight 4-bit
Binary Coded Decimal (BCD) counters rather than digi-
tal in- processor (32-bit) counter modules typically used in
DCS data acquisition systems. The compressed DCS system
achieves an 87.5% data compression without compromising
on measurement accuracy or signal-to-noise ratio, while
maintaining low data burden and cost. In the following sec-
tions, we briefly describe the traditional DCS technique and
the compressed DCS approach. We present experimental
validation of the compressed DCS approach comparing it
with a conventional eight-channel DCS system in both tissue
simulating phantoms and in-vivo experiments on humans.

II. DCS: THEORY AND BACKGROUND
A schematic of a typical DCS system is shown in Fig. 1.
Light from a long coherence length near infrared laser source
illuminates the tissue through an optical fiber. NIR light
diffuses through tissue and is detected by a single mode
optical fiber positioned 1-3 cm away from the source and is
redirected to Single Photon Counting Avalanche Photodiode
modules (APDs), that produce a TTL pulse for each detected
photon [21]. Due to high temporal coherence of the laser
source, changes in the optical pathlength of light diffus-
ing through the tissue (i.e., due to scattering off moving
particles/red blood cells) impart fluctuations in the intensity
recorded at the detector, that are then used to compute the dig-
ital normalized intensity autocorrelation function. Blood flow
is estimated by fitting the computed autocorrelation function
to a diffusion model appropriate for the tissue geometry [7].
Photon counts are detected as a stream of TTL pulses, which
are sampled by counter/timer modules at a fixed sampling
frequency fs. If we consider the stream of photon counts as
n(i), then the normalized intensity autocorrelation function,
g2 (τ ), is:

g2 (1n = τ fs) =
〈n(i)n(i+1n)〉
〈n(i)n(i)〉

(1)

Here, τ is the autocorrelation delay time and 1n = τ fs
is the integer number of shifts of photon count vector for a
given delay time. The angle brackets (〈〉) indicates averaging
of the autocorrelation function over a duration denoted by
the integration time tint , which determines the overall speed
of the measurement. For example, a system with 10 ms
integration time will yield a 100 Hz acquisition rate. The size
of individual photon count vector is defined by the integra-
tion time tint and sampling time tsample. For, tint= 10ms and
tsample= 1/fs = 1µs, n(i) is a 10, 000 point vector. The mea-
sured intensity autocorrelation function (g2(τ )) is related to
the normalized electric field autocorrelation function (g1 (τ ))
through Siegert relation: [34]

g2 (τ ) = 1+ β |g1 (τ )|2 (2)

where, β is an instrumentation factor that depends on light
polarization, detector size and speckle size. For homogeneous
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FIGURE 2. Block diagram outlining the compressed DCS photon counting
system. The outputs from individual single photon counting APDs were
routed to the clock pin (CLK) of a BCD counter. The output from the 8-BCD
counters (i.e., 4-bit output for each BCD counter for a total 32-digital
lines) was sampled through a 32-bit digital I/O port of a multifunction
DAQ and recorded on a computer for processing. A timer from DAQ (i.e.,
NI PCIe-6353) was configured to reset all BCD counters at a frequency of
fs= 1MHz . For an integration time of tint= 50ms a total of 50,000
sample 32-bit vector was recorded.

semi-infinite tissue geometry, Correlation Diffusion the-
ory [6] provides an analytical expression for g1 (τ ) =
G1(τ )/G1(0),whereG1(τ ) is the electric field autocorrelation
function given by:

G1 (ρ, τ ) =
3

4π ltr

[
exp (−K (τ ) r1)

r1
−

exp (−K (τ ) rb)
rb

]
(3)

Here, ltr= 1/(µa + µ
′

s) is the transport mean free path,
r1 =

(
l2tr + ρ

2
)0.5

,rb =
(
(2zb + ltr )2 + ρ2

)0.5
, ρ is

the source-detector separation, µa is the tissue absorp-
tion coefficient, µ

′

s is the tissue reduced scattering coef-
ficient, zb = 2ltr (1+Reff )/3(1−Reff ), and Reff is the
Fresnel effective reflection coefficient. K (τ ) is a dynamic
wave-vector that depends on the blood flow index (F);

K (τ ) =
[
3µa

(
µa + µ

′

s

) (
1+ 2µ

′

sk
2
0Fτ/µa

)]0.5
and k0 =

2π/λ. The acquired intensity autocorrelation function is
fit to this model to compute F . In a typical implementa-
tion, DCS photon counts are sampled and recorded using
in-processor Counter/Timer modules (for example, using
a National Instruments PCIe/PXIe6612 board with eight
counter/timers in [21]). DCS intensity autocorrelation func-
tions were computed in software (LabVIEW) and blood flow
indices were estimated offline.

III. COMPRESSED DCS: MULTIPLE CHANNEL SAMPLING
WITH BCD ARRAY
Here, we outline our approach for compressed DCS, using
custom electronics for memory efficient recording of pho-
ton counts. Prior implementations of DCS involved use of
in-processor counter/timer modules (typically 32-bit). For
example, we and others have used 32-bit counters on an NI

PCIe/PXIe-6612 or similar boards. Recall, that DCS detects
light using single mode fibers with output powers in the order
of a few pW; the typical photon count rate in a DCS mea-
surement ranges from 10-1000 kHz in one channel, or even
up to 2-4 MHz on the higher end. Considering the higher
end of the photon count rates, at a sampling frequency of
1 MHz (tsample = 1µs), these intensity levels result in counts
of either 0, 1 or 2 for each microsecond, i.e., elements of
the vector n(i) are either 0, 1 or 2. Using a 32-bit counter
for these low-light (low-count) applications is highly inef-
ficient. Indeed, only 1/16 or 1/32 of the data capacity of
the 32-bit register is used when counts are 0, 1 or 2 and
only 2 least-significant bits of the 32-bit counter change with
each sampling. In other words, a maximum photon count rate
of 2 MHz can be represented with just two data bits of an
incremental counter capable of storing minimum of 2-bits.
With 32-bit counters most of the memory and data commu-
nication bandwidth is largely underutilized. We further note
that for systems/experiments with faster sampling rate (e.g.,
tsample = 100 ns), these inefficiencies worsen.
Practically, this compressed DCS is implemented using

widely available low-cost BCD chips (e.g., 74LS90). The
schematic of one such implementation is shown in Fig. 2.
BCD counters use 4-bits to store decimal values up to 10.
The TTL outputs from a single photon counting module are
connected to the clock input of the BCD counter, which incre-
ments its internal register with every TTL pulse (photon).
Thus, an array of eight BCD counters can simultaneously
sample DCS photon counts from eight single photon counit-
ing modules which together form a single 32-bit integer
output (i.e., 4-bit output of 8 BCD counter). The 32-bit integer
is recorded via general purpose digital input/output lines of a
multifunction data acquisition system (National Instruments
PCIe-6353). The data acquisition process is controlled by two
software-controlled counter/timers on the data acquisition
board. The first, operating at 1MHz clocks the digital I/O
read operation, and simultaneously resets the BCD counters.
The second controls the integration/averaging time of the
photon counts. Thus, an integration time of tint = 50 ms
would yield a 50K point vector of photon counts. Custom
software (LabVIEW) is used to control the data acquisition
process and perform bit-wise operations to separate photon
counts from individual channels (i.e., combination of 4-bits)
to compute the DCS intensity autocorrelation functions as
described earlier [21]. For a single channel, the compressed
DCS system utilizes 4-bits to record photon counts, compared
to the conventional DCS systemwhich uses 32 bits. This gives
our compressed DCS system a data compression efficiency
of 87.5%.

IV. EXPERIMENTS AND RESULTS
All experiments were carried out with a custom DCS
instrument. Briefly, light from a wavelength stabilized laser
(Toptica Photonics, iBeam Smart, 785nm, 120mW, coher-
ence length >50m) was coupled to a multi-mode fiber and
used to illuminate the sample (i.e., tissue phantom or human
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FIGURE 3. DCS intensity autocorrelation curves g2(τ ) acquired from a
solid phantom using the compressed DCS system at source-detector
separations of 1 cm (red curve) and 2.5 cm (blue curve). The solid
phantom had optical properties of µa= 0.07 cm−1 and µ

′

s= 10 cm−1 at
850 nm. A total of 100 g2(τ ) curves were averaged for these plots.

FIGURE 4. DCS intensity autocorrelation function (g2(τ )) acquired from a
tissue simulating liquid phantom using the compressed DCS (solid lines)
and conventional DCS (dashed lines) systems at 1 cm (red) and 2.5 cm
(blue) source detector separations. The liquid phantom had optical
properties of µa= 0.1 cm−1 and µ

′

s= 10 cm−1 at 785 nm. Results shown
are an average of 70 curves each recorded at an integration time of
100 ms.

forearm). Reflected light from the sample was collected using
single mode fibers placed 1 cm and 2.5 cm away from the
source and redirected to single photon counting APD mod-
ules (Excelitas, SPCM-AQ4C); three detection channels were
used at 1 cm source-detector separation, while five detector
channels were used for the 2.5 cm source detector separation.
All fibers were set in place using a custom silicon mold to
create an optical probe as described earlier [21], [35]. TTL
outputs from each single photon counting APD were directed

to both the BCD counter array (for compressed DCS software
autocorrelation measurements as described in Section III)
and 32-bit counters on an NI-9174/NI-9401 for conventional
DCS autocorrelation measurement with a software correlator
[21], [35]. In both cases, autocorrelation functions recorded
from the same source-detector separation were averaged.

A. INTENSITY AUTOCORRELATION FUNCTIONS
MEASURED WITH COMPRESSED DCS: VALIDATION
ON A SOLID TISSUE SIMULATING PHANTOM
We first demonstrate the ability of the compressed DCS
system to acquire and compute autocorrelation curves from a
solid tissue simulating phantom. For this experiment the DCS
probe was secured to the surface of solid phantom (110mm×
110mm×45mm) with absorption coefficientµa = 0.07 cm−1

and reduced scattering coefficientµ′s = 10.7 cm−1 at 850 nm
(INO Biomimic Phantoms, Quebec, CA). The phantom was
illuminated with a surface optical power of 72 mW. The
compressed DCS software correlator was configured to a
sampling frequency of fsampling = 1 MHz, and an integration
time of tint = 100 ms, resulting in an effective acquisition
frequency of 10 Hz. Each frame (i.e., photon counts recorded
over 100ms integration time) contained 100,000-point vector
of 32-bit data for a single detection channel. For each channel
autocorrelation function was calculated with digital shifts of
1 to 250 samples, corresponding to delay times (τ ) of 1µs
to 250 µs. Fig.3 shows an average of 100 DCS intensity
autocorrelation functions measured from a solid phantom at
1 and 2.5 cm source detector separation (red and blue curves
respectively) using the compressed DCS software correla-
tor. The autocorrelation curves do not decay, indicating no
dynamic fluctuations (as expected with a solid phantom).
These results offer the first validation of the compressed DCS
system.

B. INTENSITY AUTOCORRELATION FUNCTIONS AND
FLOW INDICES MEASURED WITH COMPRESSED DCS:
VALIDATION ON A LIQUID SIMULATING PHANTOM
Wenext demonstrate the accuracy of flow estimatesmeasured
with the compressed DCS system, by comparing it to con-
ventional DCS autocorrelation measurements on a liquid tis-
sue simulating phantom. A tissue simulating liquid phantom
was prepared from Intralipid (20% emulsion, Sigma-Aldrich,
MO), India ink and distilled water, to realize a sample with
absorption coefficient µa= 0.1 cm−1 and reduced scatter-
ing coefficient µ

′

s= 10 cm−1 at 785 nm. The DCS probe
was placed on the surface of the liquid phantom, and DCS
intensity autocorrelation functions were recorded using both
traditional DCS and compressed DCS at 10 Hz acquisition
rate. Fig. 4 shows representative intensity autocorrelation
functions acquired by the compressed DCS system (solid
lines) from the liquid phantom at 1 cm (red line) and 2.5 cm
(blue line) source detector separations. These curves repre-
sent an average of 70 g2(τ ) curves, each acquired with an
integration time of 100ms. Here, the decay in the autocorrela-
tion function is caused by fluctuations in the photon intensity
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FIGURE 5. Comparison of blood flow indices estimated with compressed
and conventional DCS systems from a liquid phantom. (A) and (C) show
the scatter plot of the flow indices estimated by compressed DCS (y-axis)
and conventional DCS (x-axis) for source detector separations ρ= 1 cm
and ρ= 2.5 cm respectively. (B) and (C) show the comparative temporal
traces of flow index measured with compressed DCS (red curve) and
conventional DCS (blue curve). Results show good 1:1 correspondence,
including similar average flow indices (no statistically significant
difference, two-sample t-test).

that manifest dynamic scattering from Brownian motion of
fat molecules in the intralipid. The decay at 2.5 cm source
detector separation is faster than at 1 cm because increased
photon travel length at the higher source-detector separation
allows for more dynamic scattering to influence the intensity
fluctuations. The autocorrelation functions measured with
compressed DCS compare favorably to those measured with
conventional DCS system (dashed lines), with similar decay
rates.

To further validate the compressed DCS system, we com-
pared the blood flow indices estimated from the measured
intensity autocorrelation function with those estimated using
a conventional DCS instrument. Using the methods and
probes described earlier, intensity autocorrelation functions
were recorded simultaneously from the liquid phantom using
both compressed DCS and conventional DCS instruments.
DCS intensity autocorrelation functions measured at 10 Hz
from source detector separations 1 cm and 2.5 cm were
fit to the semi-infinite solution to the correlation diffusion
equation (Eq. 3) to estimate F . Fig. 5 shows the results of
this comparison. Fig. 5(A) and 5(C) show scatter plots of
flow indices simultaneously measured using the two systems,
for source-detector separations of 1 and 2.5 cm respectively.

FIGURE 6. Noise (A) and Signal-to-Noise Ratio (B) of intensity
autocorrelation functions measured using compressed DCS (blue) and
conventional DCS (red) for representative delay time of 20µs
Measurements were performed on a liquid phantom at source-detector
separation of 1 cm and detection photon count rate of 100kHz. Markers
show individual data points while the solid lines are fits to the DCS
correlation noise model.

Here, flow index estimated with the compressed DCS system
is in the y-axis, while those estimated with the conventional
DCS system is in the x-axis. Fig. 5 (B) and (D) show the
respective time courses of these flow indices, with the red
curve depicting flow indices measured with compressed DCS
and the blue curve depicting flow indices measured with
conventional DCS. At 1 cm source-detector separation, the
compressed DCS system estimated an average flow index of
F1cm
cmpDCS = (1.047± 0.15) × 10−8cm2/s, while the con-

ventional DCS system estimated an average flow index of
F1cm
cnvDCS = (0.97± 0.15) × 10−8cm2/s. At 2.5 cm source-

detector separation, the compressed DCS system estimated
an average flow index of F2.5cm

cmpDCS = (0.86± 0.22) ×
10−8cm2/s, while the conventional DCS system estimated an
average flow index ofF2.5cm

cnvDCS = (0.79± 0.22)×10−8cm2/s.
The errors represent the standard deviation of flow index
estimates over the measurement period. A two-sample t-test
revealed no statistically significant difference in the flow
estimates estimated by the two instruments for both source-
detector separations. These results validate the accuracy of
the flow indices estimated by the compressed DCS system.

C. SIGNAL-TO-NOISE RATIO OF AUTOCORRELATION
FUNCTIONS MEASURED WITH COMPRESSED DCS:
VALIDATION ON A LIQUID SIMULATING PHANTOM
The final tissue phantom validation experiment concerns the
comparison of the signal-to-noise ratios of intensity autocor-
relation functions measured using compressed DCS and con-
ventional DCS systems. Following the well-established DCS
correlation noise model [32], we defined ‘noise’ (σ (τ )) as the
standard deviation of the measured intensity autocorrelation
function g2 (τ ), and signal-to-noise ratio (SNR) as ζ (τ ) =
(g2 (τ ) − 1)/σ (τ )). DCS intensity autocorrelation functions
were recorded simultaneously from the liquid phantom (1 cm
source-detector separation) using both compressed DCS and
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FIGURE 7. Schematic of in vivo arm-cuff occlusion experiment to validate
compressed DCS blood flow measurements. The arm cuff was attached to
the bicep muscle of the volunteer. The optical probe was placed on the
forearm and was connected to the light source and detectors via optical
fibers. The output of the detector (i.e., TTL pulse output) is connected in
both compressed DCS system (i.e., BCD counter) and conventional DCS
software correlator (i.e., NI DAQ counters). An automatic tourniquet
system was used to inflate the arm cuff to 200 mmHg to effect occlusion.

FIGURE 8. Pulsatile blood flow measured on a human forearm with
compressed DCS. The red/blue lines indicate time courses of blood flow
indices measured at source detector separations of 1 cm/2.5 cm. Both
cases can clearly resolve flow changes similar to the QRS peak and the
dicrotic notch.

conventional DCS systems. Since SNR depends on signal
intensity, the light intensity for the measurement was fixed
such that the detectors recorded an average photon count rate
of 100 kHz. Autocorrelation functions were acquired at dif-
ferent rates by varying the integration time (tint ) of the mea-
surements from 1 ms to 100 ms (i.e., acquisition frequency of
1000 Hz to 10 Hz). Fig. 6(A) shows the noise in measurement
of autocorrelation function at 20µs delay time, i.e., σ (20 µs),
measured with both compressed DCS (blue) and conven-
tional DCS (red). Fig. 6(B) shows the corresponding SNR.
In both cases, the markers represent measurements from the
liquid phantom, while the solid lines represent fits of the
noise/SNR measurement to the correlation noise model [32].
It is readily apparent that the noise model fits well with the
measured noise/SNR data. Moreover, the noise/SNR of com-
pressed DCSmeasurements are comparable to those recorded

FIGURE 9. Quantitative changes in forearm blood flow measured during
an arm-cuff occlusion with compressed (red curve) and conventional
(blue curve) DCS systems. The time courses of blood flow indices are
averaged with a 20-point (2 second) moving average window.
(A) represents the blood flow changes measured at source-detector
separation ρ= 1 cm and (B) represents the blood flow changes measured
at source-detector separation ρ= 2.5 cm. Blood flow changes measured
with compressed and conventional DCS systems are in good agreement
with each other; both record almost 100% reduction in blood flow during
occlusion, and a strong reperfusion response during the recovery period.

with conventional DCS. This is an important validation step,
because it shows that the data compression effected by the
BCD counters is not at the expense of measurement SNR.
Here, 20µs has been selected as a delay time to illustrate
the noise performance, because it represents to a section of
the autocorrelation function that is sensitive to changes in
flow (Fig. 4). These results are in-line with our previous
experiments to characterize SNR of DCS systems [21], [35].

D. DYNAMIC BLOOD FLOW MEASUREMENT IN HUMAN
ARM WITH COMPRESSED DCS
Finally, we demonstrate and validate that the compressed
DCS system can accurately measure blood flow changes
in vivo. To this end, we measured the blood flow dynam-
ics on a human forearm during arm cuff occlusion using
both compressed DCS and conventional DCS instruments.
In vivo experiments were approved by the Institutional
Review Board of the University of South Florida (Protocol
number Pro00039832_CR000002, approved 11/16/2021).
Fig. 7 shows a schematic of the experiment. An optical probe
(described earlier) was placed on the forearm of an adult
volunteer (male, 25 years old), and was connected to the
light source and single photon counting detectors using fiber
optic cables. The output of the detector (i.e., TTL pulses for
each detected photon) was connected to both the compressed
DCS system (i.e., BCD counters) and a conventional DCS
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software correlator (NI-DAQ counters). Data acquisition was
realized using custom LABVIEW software for both instru-
ments. An arm cuff was wrapped over the subject’s bicep and
was connected to an automatic pump (A.T.S. 4000, Zimmer,
USA). The experiment protocol consisted of a 1-minute
baseline, followed by a 1-minute occlusion period (arm-cuff
inflated to 200mmHg), and a 1-minute recovery period. Laser
power was controlled to be within ANSI limits of safe expo-
sure for skin [36]. DCS intensity autocorrelation functions
were recorded at 10Hz using both systems, and a blood flow
index was computed by methods described earlier.

Fig. 8 shows a representative time course of blood flow
dynamics measured with the compressed DCS system under
baseline conditions. Blood flow measured at both 1cm, and
2.5 cm source detector separation show dynamic blood flow
changes; the pulsatility of blood flow due to the heartbeat is
clearly resolved. In addition, some high frequency waveform
features similar to the QRS peak and the dichrotic notch are
well resolved; the dicrotic notch represents a brief increase in
blood pressure and blood flow following closure of the aortic
valve in the cardiac cycle. We note that that the noise in the
measurements is greater at 2.5 cm source detector separation.
This is to be expected as the measured photon count rates
are lower for longer source-detector separation. The pulsatile
blood flow measurements demonstrates that the compressed
DCS system can resolve small flow changes and that it can be
used for high-speed blood flow measurements. These results
are similar to our prior work on pulsatile blood flow detection
with conventional DCS systems [21], [35].

Fig. 9 shows the results of the arm-cuff occlusion experi-
ment, for source-detector separations of 1 cm (Fig. 9A) and
2.5 cm (Fig. 9B). Time course of the blood flow index are
displayed as a function of time during three phases of the
experiment – baseline, occlusion, and recovery. Time courses
of the blood flow index were smoothed with a 20-point
(2-second) moving average window. The dynamics of blood
flow changes are clearly visualized by both compressed DCS
(red curve) and conventional DCS (blue curve). During the
1-minute occlusion phase, blood flow reduces by almost
100%, which is accurately measured with the compressed
DCS system. Both compressed DCS and conventional DCS
systems also track the reperfusion in blood flow in the recov-
ery phase. Importantly, the data compression does not impact
the estimated blood flow indices over a large flow change,
showing that the compressed DCS has a dynamic range that
is comparable to conventional DCS instruments.

V. DISCUSSION
This article describes a new approach to high-speed sam-
pling of DCS photon counts and fast software computation
of intensity autocorrelation functions using resource- and
cost-efficient data acquisition units. The key innovation is
the development of a data compression approach (Section III)
that identifies and exploits inefficiencies in conventional
photon counting for DCS. The lossless data compression
is 87.5% efficient and can be implemented using simple,

low-cost digital circuits. We validated the accuracy of
blood flow measured with the compressed DCS system
with experiments on tissue simulating phantoms (Fig. 3-5).
We further characterized and validated the signal-to-noise
ratio of measured DCS intensity autocorrelation functions,
by comparing the performance of the compressed DCS sys-
tem to conventional DCS systems, and by fitting measure-
ment noise to a DCS correlation noise model (Fig. 6). Finally,
we performed in vivo validation of the compressed DCS
system, by measuring the blood flow dynamics in a human
forearm during arm-cuff occlusion. The demonstrations of
blood flow pulsatility (Fig. 8) and measurements of larger
blood flow changes (Fig. 9) in vivo highlight the sensi-
tivity and dynamic range of the compressed DCS system.
In all cases, performance of the compressed DCS system met
benchmarks set by conventional DCS instruments.

The current implementation of the compressed DCS
approach, used a generic multi-function data acquisition
device to read photon-counts off the BCD counters as a
stand-alone realization of the compressed DCS instrument.
Critically, the data compression (photon counting with an
array of BCD counters) can be readily implemented in other
realization of fast DCS instruments, such as those that use
FPGAs [22], [23], FFT-based software correlators [37], [38],
or multi-core microcontroller units/MCUs (e.g., Texas Instru-
ment TMS320F28379D, Infineon TC275Dx) that are capable
of multithreaded operations for real-time sampling of DCS
photon counts and computation of blood flow indices [39].
Since the data compression occurs at the photon counting
stage, we expect that our approach will be just as effective
in any implementation of DCS.

More generally, the data compression approach presented
here can be extended to other high-speed photon counting
applications, with optimizations to account for the highest
expected photon count rate. Per optical techniques, typical
photon counting APDs have a response time of 25 ns and
a ‘dead-time’ of 50 ns, which translates to a maximum
detectable count rate of 10-13 MHz (i.e., 10-13 counts/µs)
[21] – this is within the capability of the BCD counter. Thus,
the compressed photon counting approach can be readily
adapted to other optical technologies such as Fluorescence
Correlation Spectroscopy, time-domain near infrared spec-
troscopy, or fluorescence lifetime measurements.

We note a few design considerations and limitations of the
compressed DCS approach. The current implementation of
compressed DCS used 4-bits of the BCD counter to sample
photon counts from one channel. Eight such channels form
a single 32-bit number that is recorded via a digital I/O
line. Scaling this approach to more channels would require
the availability of several such digital lines. Practical imple-
mentations of these lines will be straightforward in FPGAs
or dedicated digital I/O boards but will also require careful
bit-wise operations to accurately parse the data, and suffi-
cient data throughput to transfer the counts. The bandwidth
required for transferring 32-bit integers (i.e., 8 channels)
everyµs over 1 second is∼3.8MB/s. Note that the bandwidth
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requirements for conventional DCS systems in these cases
would be 16 times greater. Furthermore, depending on the
expected photon count rate, the bits per channel can be
reduced to 2, which will help alleviate this limitation. Com-
pared to a standard DAQ counter based acquisition system
the compressed DCS systemmay experience some count loss
(<2% at 1 MHz sampling frequency) due to the overlapping
of TTL pulses with reset duration. However, our experimental
results shows that this data loss doesn’t affect the calculation
of autocorrelation functions or blood flow estimates. Finally,
we note that the compressed DCS approach does not address
the limitation that scaling DCS for imaging will require many
expensive photon-counting APDs. Some recent work [40] has
addressed this limitation with parallelized photon-counting
measurements withAPD arrays for imaging applications. The
compressed DCS approach can be readily adopted for such
instruments.

VI. CONCLUSION
We have reported the development of a lossless data compres-
sion scheme for fast sampling of photon counts that can be
applied to deep tissue blood flow measurements with DCS.
We have validated this approach against conventional DCS
instruments in experiments on tissue simulating phantoms
and in vivo in humans. Our results show that performance
of the compressed DCS instrument meets benchmarks set by
conventional DCS instruments, while offering lossless data
compression of 87.5%.
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