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Goals: We quantified cerebral blood flow response to a 500 cc bolus of 0.9%% nor-
mal saline (NS) within 96 hours of acute ischemic stroke (AIS) using diffuse correla-
tion spectroscopy (DCS). Materials and Methods: Subjects with AIS in the anterior,
middle, or posterior cerebral artery territory were enrolled within 96 hours of symp-
tom onset. DCS measured relative cerebral blood flow (rCBF) in the bilateral frontal
lobes for 15 minutes at rest (baseline), during a 30-minute infusion of 500 cc NS
(bolus), and for 15 minutes after completion (post-bolus). Mean rCBF for each time
period was calculated for individual subjects and median rCBF for the population
was compared between time periods. Linear regression was used to evaluate for
associations between rCBF and clinical features. Results: Among 57 subjects, median
rCBF (IQR) increased relative to baseline in the ipsilesional hemisphere by 17%
(�2.0%, 43.1%), P< 0.001, and in the contralesional hemisphere by 13.3% (�4.3%,
36.0%), P < .004. No significant associations were found between ipsilesional
changes in rCBF and age, race, infarct size, infarct location, presence of large vessel
stenosis, NIH stroke scale, or symptom duration. Conclusion: A 500 cc bolus of .9%
NS produced a measurable increase in rCBF in both the affected and nonaffected
hemispheres. Clinical features did not predict rCBF response.
Key Words: Cerebral blood flow—diffuse correlation spectroscopy—stroke,
intravenous fluids—saline
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Introduction

In the normal brain, cerebral autoregulation maintains
cerebral blood flow (CBF) at a constant level despite
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variations in mean arterial pressure (MAP).1-4 In patients
with acute ischemic stroke, autoregulation is thought to be
impaired and CBF may vary with changes in MAP.5-7 In
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damage to the infarct core, and reversible damage to sur-
rounding tissue, the ischemic penumbra. Acute stroke thera-
pies are intended to increase blood flow to the penumbra.
Simple approaches to increase CBF, such as lowering

head of bed position and administration of intravenous
.9% normal saline (NS) are used commonly in clinical
practice, although their clinical utility is uncertain. Prior
studies have shown that lowering head of bead has a
small but measurable impact on CBF; although, a large
cluster-randomized trial showed no difference in clinical
outcomes between head of bed flat (0°) and elevated
(�30°).8-11 Similarly, volume expansion and hemodilution
have been shown to increase CBF, but not to improve clin-
ical outcomes.12,13 Limited data suggest that bolus NS
increases regional CBF in patients with subarachnoid
hemorrhage.14 Data on the CBF response to NS after
ischemic stroke is limited.15,16

We aimed to quantify the CBF response to a 500 cc
bolus of NS administered within 96 hours of acute ische-
mic stroke. We employed diffuse correlation spectroscopy
(DCS) to monitor changes in CBF. DCS is a transcranial
noninvasive optical technique that uses near infrared
light. DCS provides a real-time, continuous bedside mea-
sure of changes in CBF (ie, relative CBF, rCBF). Unlike
near-infrared spectroscopy or diffuse optical spectros-
copy, which measures oxy- and deoxy-hemoglobin tissue
concentration and uses blood volume as a surrogate for
changes in blood flow, DCS, a newer technique, directly
quantifies microvascular CBF. Relative CBF measured
with DCS has been validated against other blood flow
imaging/monitoring technologies, and DCS has been
used to measure changes in CBF in both healthy and
stroke subjects.8,11,17-25 The significance of this work is
two-fold. First, by quantifying the rCBF response to bolus
NS, this study provides information about the physiologic
response to an intervention that is frequently used in clini-
cal practice. Second, this study demonstrates the potential
for DCS, a real-time continuous monitor of rCBF, to quan-
tify individual response to an intervention over an
extended period of time. With continued technical refine-
ment, this technology holds the potential to enable clini-
cians to individualize care and optimize CBF.

Materials and Methods

Population

A single center, nonrandomized, pilot, single arm time-
series clinical trial was conducted at a single comprehensive
stroke center and was approved by the University of Penn-
sylvania institutional review board. Inclusion criteria
included: age � 18 years, acute ischemic stroke in the terri-
tory of the anterior, middle, or posterior cerebral artery terri-
tory, and enrollment within 96 hours of symptom onset.
Exclusion criteria included: infarct limited to the brainstem
and/or cerebellum, bi-hemispheric infarcts or infarct in the
contralesional hemisphere within the past 30 days, symptoms
of active congestive heart failure (dyspnea, orthopnea,
increased oxygen requirement), exacerbation of congestive
heart failure requiring hospitalization within the past 30 days
or severe systolic dysfunction with ejection fraction <20%,
end-stage renal disease requiring hemodialysis or creatinine
clearance <20 mL/min/1.7m2, hemicraniectomy or other
skull defect, pregnant women, current enrollment in another
clinical trial, and any other illness or condition that the enroll-
ing investigator felt would pose a hazard to the subject from
participating in the study.
Study Measurements and Intervention

After informed consent was obtained, demographic
and clinical variables were recorded, including past medi-
cal history, infarct location, size, vascular imaging results,
and the National Institute of Health stroke scale (NIHSS).
The DCS probe was placed on the patient at the temporal
margin of the forehead bilaterally (supplemental Fig 1).
The custom DCS instrument used in this study measures

relative cortical CBF using near-infrared light. The details of
this device have been described previously.23 The instru-
ment uses a laser (785 nm, 80 mW, CrystaLaser Inc., Reno
NV) of constant intensity and custom fiber-optic detectors
(Fiberoptic Systems, CA) integrated onto a 2 cm x 5 cm rub-
ber probe. Light transmitted through tissue was detected at
1.0 cm and 2.5 cm source-detector separations. Unlike near-
infrared spectroscopy/diffuse optical spectroscopy, which
indirectly estimates changes in CBF based on measured
changes in oxy- and deoxy-hemoglobin, DCS provides a
direct measure of microvascular CBF by quantifying tempo-
ral fluctuations of the intensity of light scattered by moving
red blood cells. Temporal fluctuations in the detected light
intensity are quantified using an intensity temporal autocor-
relation function computed with custom software. An index
of CBF is derived by fitting the measured light intensity tem-
poral autocorrelation functions to a solution of a 2-layer light
diffusion model through tissue.26,27

After the DCS probes were placed and secured with a
cloth headband, the patient was asked to remain in bed
and to be still for the duration of the monitoring session.
For the first 15 minutes of the 60-minute monitoring ses-
sion there was no NS infusion (baseline), then 500 cc of
.9% NS was infused over 30 minutes (bolus). Monitoring
continued for 15 minutes after the completion of the bolus
(postbolus). During the monitoring session, heart rate and
blood pressure were recorded every 15 minutes. The
patient was assessed for adverse events during the moni-
toring session and 24 hours after the monitoring session.
Relative changes in CBF were estimated for each sub-

ject. Details of this analysis methodology are presented in
the online supplement. DCS intensity autocorrelation
functions were preprocessed to remove and correct for
motion artifacts. Intensity autocorrelation functions at 1.0
and 2.5 cm source detector separations were processed
together to estimate changes in CBF. We employed the
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modified Beer Lambert law for flow, adapted for a 2-layer
tissue photon diffusion model to account for the influence
of blood flow changes in the scalp.26,27 As a final post
processing step, rCBF measurements that were less than
�100% or greater than 250% were considered nonphysio-
logic, and were removed to reduce bias from measure-
ment error. This correction affected only 1% of the
measured CBF values.
Analysis

We hypothesized that bolus administration of NS
would increase CBF in the ipsilesional hemisphere, and
that there would be no change in CBF in the contralesional
hemisphere. Baseline demographics and clinical informa-
tion were summarized using descriptive statistics. The
NIHSS stroke scale was categorized as mild (0-4), moder-
ate5-9 and severe (10+). Infarct location was categorized
as: anterior cerebral artery (ACA), posterior cerebral
artery, anterior middle cerebral artery (MCA) with corti-
cal involvement, posterior MCA with cortical involve-
ment, and deep MCA territory without cortical
involvement (subjects could be in multiple categories).
Infarct volume was estimated using the ABC/2 method
and categorized as <15 cc, 15-30 cc, and >30 cc.28,29

Infarct etiology was classified as cardioembolism, large
vessel atherosclerosis, small vessel, cryptogenic, and
other/multiple. Ipsilesional large vessel stenosis was cate-
gorized as <50%, 50%-95%, and near occlusion/occlu-
sion. Baseline MAP was the mean of the MAP recorded at
the start of monitoring (time 0 minutes) and immediately
before initiation of NS bolus (time 15 minutes); postbolus
MAP was the mean of MAP recorded immediately after
completion of the NS bolus (time 45 minutes) and at the
end of monitoring (time 60 minutes).
The mean rCBF values in each time period (baseline,

bolus, and postbolus) were calculated for each subject. The
median values for the entire population were summarized
and signed rank test was used to compare rCBF at baseline
and bolus as well as rCBF at baseline and postbolus. Postbo-
lus rCBF was summarized across key clinical subgroups,
including infarct size (<15 cc and �15 cc), ipsilesional large
vessel stenosis (<50%, and 50%-100%), infarct location
(ACA and/or anterior MCA territory versus all others), and
NIHSS (0-4 versus 5+). Categories were dichotomized given
the relatively small number of subjects. Finally, the change
in mean rCBF from baseline to postbolus was calculated for
each subject. Univariate linear regression was used to quan-
tify the relationship between clinical features and change in
rCBF, with the plan to create a multivariable model includ-
ing any variables associated at P< .05 in the univariate anal-
ysis. We hypothesized that larger infarcts, ipsilesional large
vessel stenosis, ACA and/or anterior MCA location, and
higher NIHSS would be associated with a greater increase
in rCBF. In an exploratory analysis we used linear regression
to quantify the association between the change in rCBF and
the change in MAP from baseline to postbolus. Finally,
mixed effects regression was used to estimate the relation-
ship between rCBF and time as a linear relationship in the
baseline and bolus time periods. This model used restricted
maximum likelihood estimation, unstructured covariance,
and included an interaction term to estimate the change in
slope after the start of the NS bolus (time £ NS bolus),
which represents the relative increase in rCBF attributable to
the saline infusion. All analyses were conducted separately
in the ipsilesional and contralesional hemisphere using Stata
version 15 (StataCorp LLC, College Station, TX). A priori
power calculations, which assumed rCBF would be nor-
mally distributed, correlation between baseline and postbo-
lus rCBF of .6-.8 and a standard deviation of 10%-15%,
suggested that 57 subjects would provide 80% power to
detect a 5% increase in rCBF.
Results

A total of 81 subjects were enrolled. A technical
advancement in DCS fiber optic probe design which
increased signal-to-noise ratio occurred after the first 8
subjects; these subjects were excluded because their data
were not comparable to later subjects. There were 5 sub-
jects who failed to complete the monitoring session and
11 subjects were excluded due to poor data quality
(details in supplemental Table 1). The remaining 57 sub-
jects were analyzed. Baseline characteristics of these sub-
jects are summarized in Table 1.
MAP increased from median (IQR) of 100.1 mmHg (93.2-

110.0 mmHg) at baseline to 104.8 (96.7-113.9) postbolus
period (P< .001). Median rCBF (% change) across all sub-
jects and its IQR is shown in Figure 1 for both the ipsile-
sional and contralesional hemispheres. All data points from
all subjects are shown in supplemental Figure 2. Median
rCBF by hemisphere and time period is shown in Table 2.
The difference in rCBF between baseline and bolus, and
between baseline and postbolus was significant in both
hemispheres (P< .05 for all comparisons using Wilcoxon
signed rank test). The median rCBF was numerically greater
in the ipsilesional hemisphere, although there was not a sta-
tistically significant difference between the hemispheres in
the bolus (rCBF ipsilesional = 13.8%, rCBF contrale-
sional = 8.0%, P= .39) or postbolus time periods (rCBF ipsile-
sional = 17.0%, rCBF contralesional = 13.3%, P= .64).
Postbolus rCBF across clinical subgroups is summa-

rized in Table 3. Univariate regression results, evaluating
the association between clinical factors and the change in
rCBF from baseline to postbolus, is presented in Table 4.
There were no statistically significant associations in the
ipsilesional hemisphere. In the contralesional hemisphere,
there was a smaller change in rCBF among subjects with
an ACA and/or anterior MCA infarction compared to
other locations. The data did not support our pre-existing
hypotheses that larger infarcts, greater NIHSS, anterior
MCA location, and ipsilesional large vessel stenosis



Table 1. Study population

Variable N

Age, median (IQR) 57 61 (53-72)

Female 26 46%

Race

White 30 53%

Black 26 46%

Other 1 2%

Past medical history

Hypertension 41 72%

Diabetes 10 18%

Hyperlipidemia 28 49%

Atrial fibrillation 6 11%

Congestive heart failure 2 4%

CAD/Prior MI 8 14%

Chronic kidney disease 2 4%

Peripheral artery disease 4 7%

Prior stroke 11 19%

Smoking status

Current 12 21%

Former 20 35%

Time from onset, median (IQR) 66 (49-83)

<48 h 14 25%

48+ h 43 75%

NIHSS at monitoring, median (IQR) 2 (1-7)

NIHSS 0-4 39 68%

NIHSS 5-9 8 14%

NIHSS 10+ 10 18%

Infarct Location

ACA 2 4%

Anterior MCA, cortical involvement 24 42%

Posterior MCA, cortical involvement 14 25%

MCA, deep penetrator only 20 35%

PCA 4 7%

Infarct Volume, median (IQR) 2 (1-9)

<15 cc 47 84%

15-30 cc 5 9%

>30 cc 4 7%

Infarct etiology

Cardioembolism 12 22%

Large vessel atherosclerosis 10 18%

Small vessel lacune 9 16%

Cryptogenic 18 32%

Other/multiple 8 14%

Ipsilesional large vessel stenosis

<50% 43 75%

50%-95% 5 9%

Near occlusion/occlusion 9 16%
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would be associated with a greater increase in rCBF.
Graphs of rCBF over time by clinical subgroup are pre-
sented in supplemental Figures 3-7. Multivariable regres-
sion was not performed due to lack of associations in the
univariate analysis. We did not detect a significant associa-
tion between the change in rCBF and the change in MAP
from baseline to postbolus (Figure 2A, ipsilesional hemi-
sphere: b = .1, 95% CI: �.8 to 1.1, P= .80; Figure 2B: con-
tralesional hemisphere: b =�.5, 95% CI:�1.5 to .5, P= .35).
In the mixed effects regression, the interaction term for
time £ NS bolus was significant in both the ipsilesional
(b = .05, 95% CI: .03-.07, P< .001) and contralesional hemi-
spheres (b = .08, 95% CI: .05-.11, P< .001), representing a
significant change in slope after the start of the NS bolus.
Over the 30-minute bolus time period this equates to a
6.0% increase in rCBF in the ipsilesional hemisphere (95%
CI: 3.2-8.8) and a 9.4% increase in rCBF in the contrale-
sional hemisphere (95% CI: 6.3-12.6). Estimates from the
mixed effects regression differ from the primary analysis
because the model attempts to account for changes in
rCBF over time in the baseline period.
The study intervention was well tolerated; no serious

adverse events occurred. There were 3 adverse events
which were possibly related to the study intervention: an
IV infiltrated in 1 patient, monitoring stopped due to a
systolic blood pressure >220 mm Hg in 1 patient, and 1
patient, who was in atrial fibrillation at the start of the
monitoring session, had tachycardia during the monitor-
ing session which was asymptomatic.
Discussion

In patients with acute ischemic stroke, 500 cc of .9% NS
administered over 30 minutes was associated with a mea-
surable increase in rCBF in both the ipsilesional and con-
tralesional hemispheres. There was not a statistically
significant difference between hemispheres.
Fluid resuscitation is a common treatment strategy in

acute ischemic stroke. American Heart Association guide-
lines recommend correction of hypovolemia, but note “there
are no data to guide volume and duration of parenteral fluid
delivery.”30,31 Our study provides evidence that a 500 cc
bolus of NS results in increased CBF. This builds on prior
reports showing increased cerebral perfusion measured
usingMRI during induced hypertension from isotonic fluids
and confirms a physiologic rationale for the use of bolus iso-
tonic fluids in the early management of ischemic stroke
and/or in patients with fluctuating symptoms.32-34

Our results raise several important questions. First, it is
uncertain whether the measured changes in rCBF could
have a meaningful clinical impact. Prior studies of hemodi-
lution and/or volume expansion have failed to demon-
strate an improvement in clinical outcomes, and overly
aggressive fluid resuscitation has the potential to be harm-
ful.13,35 Second, there was wide variability in rCBF
response to bolus NS across subjects, as illustrated by the
wide IQR for rCBF. This may be due in part to the heterog-
enous patient population. Also, studies have questioned
the extent of autoregulation impairment after stroke, sug-
gested that the range of autoregulation is narrower than
classical models, and suggested that autoregulation curves
may vary across subjects; all of which may also be contrib-
uting to the observed variability.2,36-42 Finally, although we
expected the contralesional hemisphere to serve as a con-
trol, with no change in CBF during saline infusion, we



Figure 1. Time course of percent change in CBF; solid lines are median responses averaged across all subjects, shaded regions are IQRs. Abbreviation: CBF, cere-
bral blood flow.

BLOOD FLOW RESPONSE DURING NORMAL SALINE INFUSION 5
observed increased CBF bilaterally. This change in CBF
was not associated with changes in MAP. There is limited
evidence from studies in healthy subjects that changes in
cardiac output can lead to changes in CBF that is indepen-
dent of changes in MAP.43,44 Unfortunately, we did not
directly measure cardiac output or cerebral autoregulation
in this study. Further study is necessary to address all of
these important questions in order to better understand the
CBF response to NS infusion, and to determine if there is
any potential therapeutic benefit.
Still, our study highlights the potential utility of a real-

time continuous CBF monitor, such as DCS, to inform and
individualize stroke care. If individual CBF response to
interventions cannot be inferred by clinical factors or mea-
surement of MAP, then direct measurement of CBF is
required to maximize therapeutic benefit. This logic applies
to a range of possible therapeutic approaches beyond NS,
including head of bed position, volume expansion, cerebral
vasodilators, or induced hypertension.
This study has limitations. Although the measured

changes in rCBF were modest overall, some individual
measurements were larger than would be expected given
the intervention. DCS is a direct measure of microvascu-
lar CBF, which is more sensitive to arterial than venous
Table 2. Percentage change in CBF, r

Bolus

Median

Ipsilesional Hemisphere 13.8% (5

Contralesional Hemisphere 8.0% (�
IQR=interquartile range
contributions.45,46 DCS CBF measurements have been
validated against MRI techniques, Xenon CT, TCD, and
fluorescent microspheres in both healthy controls and
neurologically injured populations.17-19,21 Still, in the set-
ting of extended monitoring across a wide range of sub-
jects, measurement error could conceivably be biasing
the results. DCS is an evolving technology and advance-
ments in the field of optical imaging should help to
improve its accuracy and utility in future studies. Key
recent advancements include the ability to use a real-
time software correlator to improve the temporal resolu-
tion of DCS measurements and the use of a pressure
modulation algorithm to more accurately separate cere-
bral from extracerebral signals.25 Additionally, with the
use of indocyanine green as a dynamic contrast agent,
DCS can be calibrated to generate absolute, rather than
relative, estimates of CBF.47,48 The current study pre-
dates some of these advances. Additionally, the DCS
probes used in this study measure rCBF in the frontal
poles, and may not be sampling penumbra in many
cases. Ongoing work is aimed at monitoring other corti-
cal territories (ie through hair).
The monitoring session was not sufficiently long to

know the duration of rCBF elevation after NS bolus. It
elative to baseline, by time period

Postbolus

IQR Median IQR

.3, 23.5) 17.0% (�2.0, 43.1)

2.1, 21.0) 13.3% (�4.3, 36.0)



Table 3. Percentage change in CBF, relative to baseline, in the postbolus time period, by clinical subgroup

Ipsilesional Contralesional

Subgroup N Median (IQR) P value Median (IQR) P value

Infarct size

<15 cc 47 20.5% (�0.6, 43.6) .06 13.3% (�4.3, 37.5) .89

15 cc+ 9 �2.0% (�15.1, 15.3) 21.3% (5.9, 28.4)

Stenosis

<50% 43 13.5% (3.4, 23.3) .99 9.7% (�6.0, 22.5) .54

50%-100% 14 17.9% (10.0, 28.1) 6.3% (1.3, 20.0)

Location

Anterior Cortical MCA 24 17.7% (�8.2, 36.1) .69 3.0% (�22.4, 26.2) .02

All others 33 17.0% (�.6, 43.4) 23.1% (5.9, 43.2)

NIHSS

NIHSS 0-4 39 18.8% (�10.6, 43.4) .93 21.3% (�4.3, 37.5) .24

NIHSS 5+ 18 16.1% (1.1, 36.6) 5.4% (�15.6, 32.6)

Time from onset

<48 h 14 8.2% (�24.3, 29.1) .19 3.0% (�15.6, 32.6) .28

48+ h 43 18.8% (�.6, 43.6) 21.3% (1.8, 36.3)

IQR, interquartile range
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is also possible that response to bolus NS depends on
intravascular volume status, which was not objectively
measured. Because most patients were enrolled more
than 24 hours after admission, it is likely that they had
received some fluid resuscitation prior to enrollment.
Given our relatively small sample size and the heterog-
enous study population, there was limited power to
detect significant differences across clinical subgroups.
In particular, we had very few subjects with large
infarcts and/or an ipsilesional large vessel occlusion.
Table 4. Univariate l

Ipsilesional

b Std Error 95% CI

Age (per year) 1.0 .3 (�.7, .7)

Race

White Ref

Black/other 6.0 8.5 (�11.1, 23.1)

Volume

<15 cc Ref

15 cc+ �19.6 11.5 (�42.7, 3.5)

NIHSS

0-4 Ref

5+ 4.3 9.2 (�14.1, 22.6)

Location

ACA or Anterior MCA �5.9 8.6 (�23.1, 11.4)

Other Ref

Stenosis

<50% Ref

50%-100% �1.1 9.9 (�21.0, 18.8)

Time from onset

<48 h Ref

48+ h 17.8 8.6 (�1.5, 37.1)
Our comparison of change in rCBF to change in MAP is
limited by the fact that blood pressure was measured
only twice in the baseline and postbolus time periods.
Continuous blood pressure monitoring would allow
for a more rigorous analysis of the relationship
between rCBF and MAP. Despite these limitations, it is
notable that we were able to measure a significant
change in rCBF in a population that was predominately
comprised of minor strokes. These results highlight the
power of DCS to detect small changes in CBF.
inear regression

Contralesional

P value b Std Error 95% CI P value

.98 �.2 .4 (�.9, .6) .66

Ref

.49 8.3 9.2 (�10.2, 26.8) .37

Ref

.10 .1 12.4 (�24.8, 24.9) 1.00

Ref

.65 �11.7 9.8 (�31.4, 8.0) .24

.50 �19.7 9.0 (�37.7, �1.7) .03

Ref

Ref

.91 13.1 10.6 (�8.2, 34.3) .22

Ref

.07 11.2 10.7 (�10.2, 32.5) .30



Figure 2. Change in rCBF (postbolus mean rCBF—baseline mean rCBF) and change MAP (postbolus MAP-baseline MAP) are graphed by subject. Linear
regression showed no significant relationship in the ipsilesional hemisphere (A, b = .1, 95% CI: �.8 to 1.1, P= .80) or the contralesional hemisphere (B, b = �.5,
95% CI: �1.5 to .5, P= .35). Abbreviation: rCBF, relative cerebral blood flow.
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Conclusions

A 500 cc bolus of .9% NS, administered over 30 minutes,
resulted in a measurable increase in rCBF in subjects with
acute ischemic stroke. There was significant interindividual
variability in rCBF response, which was not associated with
measured clinical factors or with change in MAP. This study
highlights a potential physiologic rationale for the use of iso-
tonic fluid resuscitation in acute ischemic stroke, although
more study is needed to better understand the physiologic
response to saline infusion and to determine whether
observed changes in rCBF are clinically meaningful.
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